

RoHS Compliant

Data sheet

Industry standard 1/8 brick: 48 Vin 5Vout 15A

Options:

- Negative/Positive Remote on/off logic
- · Conformal coating
- · Aluminum board

Features

Industry standard 1/8 brick package and footprint:

2.28" ×0.41" ×0.90"

2.28 " ×0.50 " ×0.90 "

• Operating temperature:-40~85°C

Wide input voltage range: 2:1

• Output voltage trim range: $-10\% \sim +10\%$

• Isolation voltage: 1500Vdc (input-output)

• High efficiency: at least 90%

• High power density

· Low output ripple and noise

· Remote On/Off

• Input under-voltage protection

· Output over-current protection

• Output over voltage protection

Thermal shutdown protection

RoHS (2002/95/EC) recognized

EN60950-1 Certified

Numbering Convention

$\frac{ESR}{1} \frac{15}{2} - \frac{48}{3} \frac{S}{4} \frac{5}{5} - \frac{L}{6} \frac{B}{7} - \frac{C}{8} \frac{G5}{9}$

No	Features	Descriptions
1	Product Series	ESR-1/8brick
2	Output current	15 - Typical output current: 15A
3	Typical Input Voltage	48 - Input Voltage: 48V
4	Number of Outputs	S - Single Output
4	Number of Outputs	D - Dual Output
5	Output Voltage	5 – Output Voltage: 5V
6	Remote on/off Logic	L – Negative Logic
	Remote on/on Logic	H or Default – Positive Logic
7	Aluminum board	B - with aluminum board
	Aluminum board	Default - No heat sink
8	Sprayed Conformal Coating	C – Sprayed conformal coating
°	Sprayed Conformal Coating	Default: no sprayed conformal coating
	RoHS feature	G5 – RoHS5
9		G – lead-free, RoHS6
		Default – lead

RoHS Compliant

Data sheet

1 Description

The ESR15-48S5 series products are open-frame DC-DC converters in an industry 1/8 brick packaging and footprint, and can provide up to 5.0V output voltage and 15A output current. All components of the converter are surface mounted. The converters feature high power density, remote on/off, thermal shutdown protection and current limit, etc.

2 **Specifications** (All specifications are typical at nominal input, full load at 25°C and airflow of 1m/S unless otherwise stated.)

Parameter		Test Condition	Min	Тур	Max	Unit		
2.1 Absolute Maximum Ratings								
Input Voltage(Vi)		Non-operating, continuous	0	_	80	Vdc		
		Transient (100ms)	_	l_	100	Vdc		
Max Output Power (Pomax)	allowable operating conditions	_	_	75	W		
2.2 Input Specif	ications							
Typical Input Volt	age (Vinom)		_	48	_	Vdc		
Input Voltage Rar	nge		36	_	75	Vdc		
Input Under-volta	ge Protection	lonom 3		_	34	Vdc		
Input Under-voltage Recovery		lonom		_	36	Vdc		
Maximum Input cu	ırrent (limax)	Vimin, Vonom,Ionom			2.4	Α		
No-load Input Current (lio)		Vinom, Io=0A	_	_	100	mA		
Quiescent Input Current (liof)		Vinom, remote output shutdown	lown		10	mA		
No-load loss		Vinom, Io=0A	_	2	4.8	W		
Inrush Transient current		lo=lonom	_	_	1	A^2S		
Input Reflected Ri	pple Current	/inom,lonom		20	50	mAp -p		
Input Filtering Capacitance		V _{INMIN} ~V _{INMAX}	_	220	_	μF		
Remote (Positive)	On	High level (2.4V~48V or open circuit, reference to -Vin)						
Remote (Positive)	Off	Low level (-0.7~0.8V, reference to -Vin) or connect to -Vin						
Remote (Negative) Off On		High level (2.4V~48V or open circuit, reference to -Vin)						
		Low level (-0.7~0.8V, reference to -Vin) or connect to -Vin						
2.3 Output Spec	cifications		T		•			
Output Voltage (Vonom)		Vinom,lonom	4.95	5.0	5.05	Vdc		
Typical Load (Ionom)		_	_	_	15	Α		
Output Current Range (Io)		Po≤ 100W	0		15	Α		
Line Regulation (Vov)		Vimin-Vimax,lonom	_	±0.1	±0.2	%Vo		
Load Regulation (Vol)		0-100%lonom,Vinom		±0.2	±0.5	%Vo		
Output Voltage Trim Range (Voadj)		lo≤lonom,Po≤75W	-20	<u> </u>	+10	%Vo		

RoHS Compliant

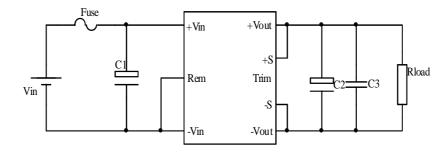
Data sheet

Parameter		Test Condition	Min	Тур	Max	Unit		
Over-voltage	Protection Mode		Automa	atic recov	ery			
Protection	Threshold	Po <pomax< td=""><td>5.75</td><td>_</td><td>7.0</td><td>Vdc</td></pomax<>	5.75	_	7.0	Vdc		
Over-current	Protection Mode		lockout,	Automatic	recovery	_		
Protection	Threshold	Vinmin~Vinmax, Tc (baseplate temp) = -40~100°C	105	_	150	%lono m		
Short-circuit Protection	Protection Mode		lockout, Automatic recovery			_		
	Peak Deviation	25%-50%-25%lonom 50%-75%-50%lonom	_	100	250	mV		
Dynamic Load	Settling Time	Δ Io/ Δ t=0.1A/ μ S,Vinom	_	100	200	μs		
Response	Peak Deviation	0%-100%-0%lonom	_	_	±50	%Vo		
	Settling Time	Δlo/Δt=0.1A/μS,Vinom	_	_	800	μs		
	RMS (20MHz)		_	_	40	mV		
Output Ripple & Noise ①	Peak-to-Peak (20MHz)	Vinom, 20MHz, externally add a $1\mu F$ ceramic capacitor and a $10\mu F$ tantalum	ı	_	100	mV		
	Peak-to-Peak (100MHz)	capacitor to the output	_	_	200	mV		
External Output Capacitance (Co)		V _{INMIN} ~V _{INMAX} ,0~100%I _O	0	_	10000	μF		
Turn-on/off Peak	Deviation	Vinom,lonom	ı	_	±5	%Vo		
Turn-on Delay Time		10%Vinnom 90%Vonom	-	_	30	mS		
Output rise time ②		10%Vonom90%Vonom	_	_	15	mS		
Remote Sense Vo	Itage Sampling		Avaliable					
2.4 Safety Specifications								
Isolation Voltage Input to output		Leak Current≤1mA, 1min	1500	_	_	Vdc		
Isolation Resistan	ce (RISO)	500V _{DC}	10 — —			МΩ		
Safety Certificate		EN 60950-1:2006 Recognized						
2.5 Reliability								
Vibration Test(sine	e)	Frequency: 10~55Hz Amplitude: 0.35mm Acceleration: 50m/s ² Cycle: X,Y,Z 30min each axis	After being tested, no damage to the converter and its components, the appearance, output voltage and output ripple and noise (p-p) meet the data sheet requirements.					
Impact Test (half-s	sine)	Peak Acceleration: 300m/s ² Duration: 6ms 6 times for three perpendicular directions	After being tested, no damage to the converter and its components, the appearance, output voltage and output ripple and noise (p-p) meet the data sheet requirements.					
MTBF		≥2×10 ⁶ h Bellcore TR-332 (Ta=25°C ≥1×10 ⁶ h Bellcore TR-332 (Ta=55°C						

<u>www. bct. com. cn</u> Page 3 of 11 V1. 0-2009. 7

RoHS Compliant

Data sheet


Parameter		Min	Тур	Max	Unit				
2.6 Environmental Specifications									
Relative Humidity		(40±2) ℃		_	90	%R H			
Cooling				Forced-air Cooling					
Thermal	Protection Mode		105℃	105℃~125℃(Auto-recovery)					
Shutdown Protection	Hysteresis		5	8	12	$^{\circ}$			
Operating Ambient Temperature				-40	_	+85	$^{\circ}$		
Storage Tempera	ature (Tst)		-55	_	+125	$^{\circ}$			
2.7 General Spe	cifications								
Switching Frequency				_	300	_	KHz		
Temperature Coefficient (Tcoeff)					_	±0.02	%Vo/ ℃		
Efficiency (η)		Vinom	100%lonom	90	91	_	%		
			20%lonom	_	81	_	%		
			50%lonom	_	90	_	%		
			80%lonom	_	91	_	%		
Weight			_	30	_	g			
RoHS		RoHS(2002/95/EC)							
Anti-sulfuration feature		Sprayed conformal coating							

Note: At high/low temperature,

- ① Output Ripple & Noise (P-to-P): Vrp<100mV (test condition: Vinom,20MHz , externally add a $1\mu F$ ceramic capacitor and a $220\mu F$ tantalum capacitor to the output.)
- ② Output rise time (T): 5mS<T<20mS (test condition: 10%Vonom--90%Vonom)

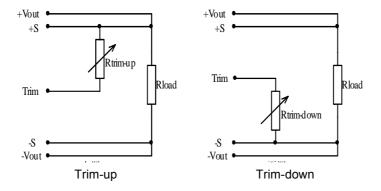
3. Basic Application Circuit and Considerations

3.1 Typical Application (Negative Logic)

Fuse: 5A C1≥220μF/100V (capacitor) C2: 220μF/25V (High-frequency, low ESR capacitor)
C3: 1μF/16V (monolithic capacitor)

RoHS Compliant

Data sheet


- 3.2 Input Voltage up to 80Vdc for long time or reverse input polarity would cause the module damaged.
- 3.3 Output will be on when the Rem is at low level or the Rem is connected to -Vin;
 Output will be off when the Rem is at high level or when the Rem keeps open circuit referenced to -Vin.
- 3.4 Output short-circuit protection model is hiccup, automatic recovery.
- 3.5 Output Trim: Exceed the maximum output power (trim up) or the maximum output current (trim down) may cause the converter operates abnormally. The output voltage shall not exceed 5.5V (trim up) or be lower than 4V (trim down), or the converter may operate abnormally. See "4. Output Voltage Adjustment (Trim)" for details.
- 3.6 Add a $220\mu F/100V$ electrolytic capacitor to the input when a capacitor is connected to the output.

4 Use Instructions (Forced-air cooling is required)

4.1 Input voltage is up to 80Vdc for long time or reserve the polarities may cause the module permanently damaged. Input voltage mutation may cause output voltage transient process. The module is not internally fuse, and an external fuse of 5A/250V shall be used.

4.2 Output voltage Adjustment (Trim):

4.2.1 Output Voltage Trim Circuit:

4.2.2 Output Trim Equations

(1) To increase the output voltage, the value of the external resistor should be

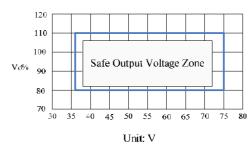
$$R_{Trim-up} = \left(\frac{5.11 \times Vo(100(\%) + \Delta(\%))}{1.225 \times \Delta(\%)} - \frac{5.11 \times 100(\%)}{\Delta(\%)} - 10.22\right)(k \,\Omega)$$

(2) To decrease the output voltage, the value of the external resistor should be

$$R_{Trim-down} = \left(\frac{5.11 \times 100(\%)}{\Delta(\%)} - 10.22\right) (k \Omega)$$

Where ${\cal V}_{\scriptscriptstyle O}$ is rated output voltage;

 $R_{Trim-up}$, $R_{Trim-down}$ are external adjusting resistors;


 Δ (%): Ratio of output voltage changes to nominal output voltage

RoHS Compliant

Data sheet

4.2.3 Output Voltage Trim Curve

Output Voltage Changes vs Input Voltage

4.3 Over-current Protection:

Operating at over-current conditions for long time may cause damage to the module; if the output is in short-circuit, the module is in hiccup mode, and the output current varies from a few mA to hundreds of mA.

4.4 Output over-voltage protection:

When the module is at over-voltage conditions, the module is locked; after eliminating the over-voltage conditions, the module needs to be reset to recover the output voltage.

4.5 Over-temperature protection:

When the baseplate temperature is higher than the threshold (100 $^{\circ}$ C to 125 $^{\circ}$ C), the over-temperature protection functions, and the output is off; when the baseplate temperature is 5 $^{\circ}$ C to 15 $^{\circ}$ C less than the threshold, the module is automatically recovered.

4.6 Remote Sense (+S, -S terminals):

When using remote sense, use twisted-pair to connect +S and -S respectively to + LOAD and -LOAD. The twisted-pair shall be as short as possible. The remote sense terminals shall not be used to provide load current, or the module may be damaged.

4.7 Remote On/Off (Rem):

(1) For negative logic,

On: Rem is at low level or connected to -Vin;

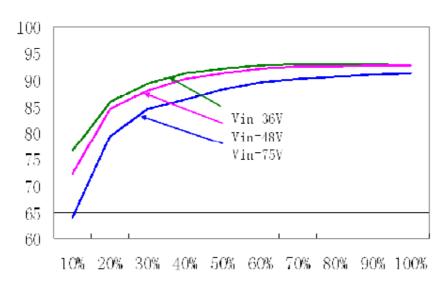
Off: Rem is at high level or keeps open circuit (referenced to-Vin);

(2) For positive logic,

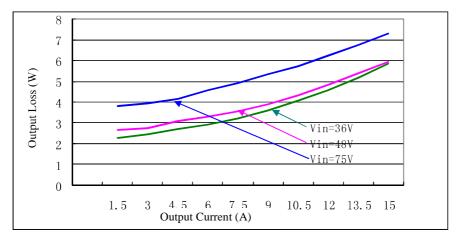
Off: Rem is at low level or connected to -Vin;

On: Rem is at high level or keeps open circuit referenced to-Vin;

4.8 Isolation Voltage Test:


Short the input terminals (+ Vin,-Vin, Rem) and the output terminals (+ Vout,-Vout, Trim, + S,-S).

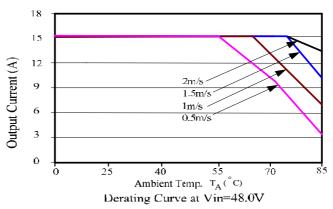
Data sheet


5 Characteristic Curves (Ta=+25°C, Airflow = 1m/S):

5.1 Efficiency Curve

Efficiency vs Input Current(Tc=+25℃)

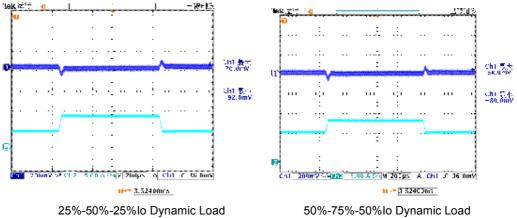
5.2 Power Loss Curve



Power Loss vs Output Current

Data sheet

5.3 Thermal Derating Curve


Temperature-derating curve (no heat sink)

Test conditions:

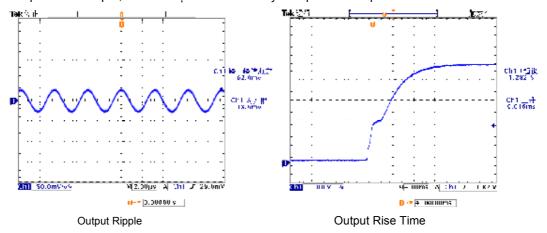
- ① The module shall be soldered on a 2.0mm standard 4-layer test board, of which the middle two layers are two-ounce copper foils.
- ② A certain gap is required between the module and test board. Keep the test board perpendicular to the horizontal direction and the long edge parallel with the horizontal plane.
- ③ Put the module into a thermal test box, and test the module using infrared thermal imaging equipment and thermocouple test equipment. See the diagram below for airflow directions.
- When the module reaches thermal equilibrium state, the components on the module can meet thermal derating requirements.

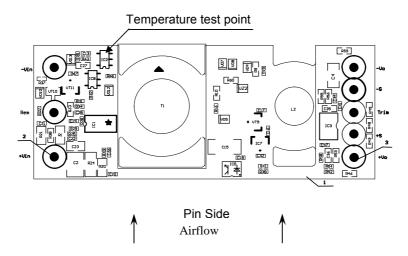
5.4 Dynamic Response:

Test conditions: Tc=25 $^{\circ}$ C,Vin=48V, 20MHz,externally add a 10 μ F tantalum capacitor and a 1 μ F Ceramic Capacitor to output, add an 220 μ F/100V electrolytic capacitor to input

20 /0 00 /0 20 /010 B yriainio 2000

5.5 Output Ripple and Power-on Wave:


<u>www.bct.com.cn</u> Page 8 of 11 V1.0-2009.7

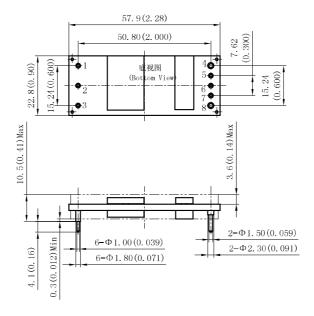

RoHS Compliant

Data sheet

Test Condition: Ta=25 $^{\circ}$ C, Vin=48V, Io=15A, 20MHz, externally add a 10 μ F tantalum capacitor and a 1 μ F ceramic capacitor to output, add a 220 μ F/100V electrolytic capacitor to input

5.6 Temperature test point and airflow direction

RoHS Compliant


Data sheet

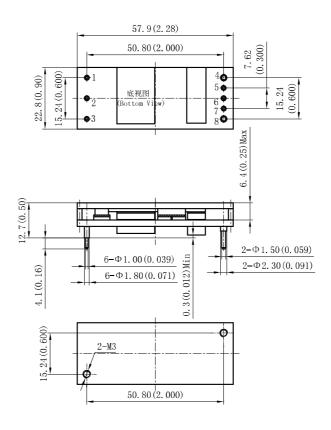
6 Mechanical Diagrams and Pin definition

6.1 Mechanical Diagrams

The product is equipped with an option of Aluminum board, which includes through-threaded mounting holes allowing for attachment of heat sinks. There are two designs: open-frame and aluminum board.

1) Open-frame (applicable to products without suffix "B" in model no.)

Note (1) Unit: mm(inch)


- (2) Tolerances: .X±0.5(.XX±0.02); . XX±0.13(.XXX±0.005) .
- (3) The maximum height of the highest components at non-pin side is 4.1 (0.16); and the minimum space between the highest components at pin side and the mounting surface of pin side is 0.3 (0.012).

RoHS Compliant

Data sheet

2) Aluminum board (applicable to products with a suffix "B" in model no.)

Note (1) Unit: mm(inch)

- (2) Tolerances: $.X\pm0.5(.XX\pm0.02)$; $.XX\pm0.13(.XXX\pm0.005)$.
- (3) The maximum height of the highest components at non-pin side is 6.4 (0.25); and the minimum space between the highest components at pin side and the mounting surface of pin side is 0.3 (0.012).
- (4) 2-M3 is the through-threaded mounting hole allowing for attachment of heat sinks. The length of M3 screw screwed into the aluminum board shall be less than 3.0mm.

6.2 Pin definition

No	1	2	3	4	5	6	7	8
Symbol	-Vin	Rem	+Vin	-Vout	-S	Trim	+S	+Vout
Definition	Negative input	Remote	Positive input	Negative output	Negative Remote Sense	Trim	Positive Remote Sense	Positive output